Transient ordered domains in single-component phospholipid bilayers.

نویسندگان

  • Teemu Murtola
  • Tomasz Róg
  • Emma Falck
  • Mikko Karttunen
  • Ilpo Vattulainen
چکیده

We report evidence of dense, ordered nanodomains in single-component fluid lipid bilayers. Our atomic-scale molecular dynamics simulations suggest that the area available to a lipid acyl chain exhibits large fluctuations, resulting in denser and sparser domains. The sizes of the dense domains can be up to approximately 10 nm, and their lifetimes are of the order of approximately 10 ns. In addition, our simulations suggest that domains of lipids with highly ordered acyl chains form predominantly within the dense regions, their sizes ranging from a few chains up to a few nanometers, and with lifetimes between approximately 10 ps-10 ns. These observations shed light on the origin of experimentally observed fluctuations, as well as on the mechanisms of phase transitions in lipid membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid fluorination enables phase separation from fluid phospholipid bilayers.

To probe the effect of lipid fluorination on the formation of lipid domains in phospholipid bilayers, several new fluorinated and non-fluorinated synthetic lipids were synthesised, and the extent of phase separation of these lipids from phospholipid bilayers of different compositions was determined. At membrane concentrations as low as 1% mol/mol, both fluorinated and non-fluorinated lipids wer...

متن کامل

Investigation of Channel-Forming Activity of Polyene Macrolide Antibiotics in Planar Lipid Bilayers in the Presence of Dipole Modifiers

The role of membrane components, sterols, phospholipids and sphingolipids in the formation and functioning of ion-permeable nanopores formed by antifungal macrolide antibiotics, amphotericin B, nystatin and filipin in planar lipid bilayers was studied. Dipole modifiers, flavonoids and styryl dyes, were used as a tool to study the molecular mechanisms of polyene channel-forming activity. The int...

متن کامل

Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.

Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores acr...

متن کامل

Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas.

Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilay...

متن کامل

Specific RNA binding to ordered phospholipid bilayers

We have studied RNA binding to vesicles bounded by ordered and disordered phospholipid membranes. A positive correlation exists between bilayer order and RNA affinity. In particular, structure-dependent RNA binding appears for rafted (liquid-ordered) domains in sphingomyelin-cholesterol-1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. Binding to more highly ordered gel phase membranes is stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 97 23  شماره 

صفحات  -

تاریخ انتشار 2006